Isochoric Heat Capacity Measurements for Heavy Water Near the Critical Point

N.G. Polikhronidi, ¹ I.M. Abdulagatov, ^{1,2} J.W. Magee, ² and G.V. Stepanov ¹

¹Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences 367005 Makhachkala M. Yaragskogo Str.94 Dagestan, Russsia

²Physical and Chemical Properties Division National Institute of Standards and Technology 325 Broadway Boulder, CO 80303, U.S.A.

The results of isochoric heat capacity measurements of D_2O as a function of temperature at a number of fixed densities will be presented. The measurements cover a range in temperature from 620 to 670 K. The measurements were performed at 7 densities between 290 and 420 kg·m³. We used a high-temperature, highpressure, adiabatic, and nearly constant-volume calorimeter. The inner volume of the calorimeter is 440.43 ± 0.05 cm³ at temperature of 296.65 K and pressure of 0.1 MPa. Changes in the volume of the calorimeter due to changes in temperature ΔV_T and pressure ΔV_P were determined both experimentally and by calculations. The heat capacity of the empty calorimeter C_0 was measured using reference fluids (n-heptane and helium) with well-known (uncertainties 0.5 % and 0.1%, respectively) isobaric heat capacities at 0.1 MPa. The average value of C_0 is about 232 J·K⁻¹ in a temperature range between 390 and 670 K. The temperature of the sample was measured with a PRT (PTS-10). The uncertainty in the temperature measurements was less than 10mK. Uncertainties of the heat capacity measurements are estimated to be 2-3%. Measurements were made in the two-phase and one-phase regions. The calorimeter construction also enables measurements of PVT and the temperature derivative $(\partial P/\partial T)_V$ along each measured isochore. The experimental temperature behavior of C_V in the one- and two-phase regions, including the coexistence curve near the critical point will be discussed. The experimental values of temperatures at saturation $T_s(\rho)$ on each measured isochore also were determined using a quasi-static thermogram method. The uncertainty of the phase transition temperature measurements is about ± 0.02 K. From our analysis of the T_S - ρ_S and temperature derivative $(\partial P/\partial T)_V$ data, the values of critical parameters (T_C, ρ_C, P_C) for D_2O were estimated.

The derived C_V data for D_2O are compared with values predicted from a recent parametric crossover equation of state by Kiselev, Abdulagatov, and Harvey [*Int. J. Thermophys* .**20**, 563 (1999)] and previous measurements of Mursalov (Ph. D. Thesis, 1975).